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ABSTRACT
We introduce a fluid mechanics based tractography method that
estimates the most likely connection path between points in a ten-
sor distribution function (TDF) dataset. We simulated the flow of
an artificial fluid whose properties are related to the underlying
TDF dataset. The resulting fluid velocity was used as a metric of
connection strength. We validated our algorithm using a digital
phantom dataset based on a pattern with two intersecting tracts.
When compared to a TDF streamline method and our single tensor
fluid mechanics tractography algorithm, our method was able to
segment intersecting tracts at a finer spatial resolution. Our method
was successfully applied to human control data to segment a major
fiber pathway, the corpus callosum, even in problematic regions with
crossing fiber geometries.

Index Terms— partial differential equations,fluid flow,image
segmentation,magnetic resonance imaging,biomedical image pro-
cessing

1. INTRODUCTION

Diffusion tensor imaging (DTI) is a magnetic resonance imaging
technique used to measure the in vivo self-diffusion of water within
tissues [1]. In the DTI reconstruction method developed by Basser
et al., diffusion weighted image (DWI) volumes from six or more
non-collinear magnetic gradient directions are used to construct a
diffusion tensor at each voxel by modeling the diffusion PDF as
an anisotropic Gaussian function [1]. This diffusion tensor, D, is
a symmetric 3 × 3 matrix that estimates the local directional depen-
dence of anistropic diffusion. Diagonalization of the diffusion ten-
sor yields three eigenvectors and three eigenvalues that form a basis
for the set of diffusion isoprobability ellipsoids and can be used to
calculate rotationally invariant scalar measures of white matter in-
tegrity [2], such as the fractional anisotropy (FA), a measure of the
voxel’s deviation from purely isotropic diffusion. A single tensor
model is limited to resolving a single dominant fiber direction per
voxel, and streamline-based tractography methods are insufficient to
resolve more complex diffusion geometries, such as fiber crossings
and intermixing of tracts. Although the development of surface evo-
lution [3, 4] and partial differential equation based methods [5, 6]
can more successfully approximate some of these fiber geometries,
more sophisticated reconstruction models are needed to faithfully
segment these kinds of architectures.
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Advances in high angular resolution (HARDI) reconstruction
methods provide a means to represent more than one dominant fiber
direction per voxel. Techniques, such as Q-ball imaging, reconstruct
the fiber probability density functions (PDF) from the raw HARDI
signal [7]. Spherical deconvolution and other deconvolution meth-
ods can express multiple fiber directions as linear combinations of a
set of basis functions or higher order tensors [8, 9]. A deconvolution-
like method proposed by Leow et al., the tensor distribution func-
tion (TDF) framework, is a flexible model for representing multiple
fiber crossings in HARDI [10]. Using the calculus of variations,
the TDF approach can separate different dominant fiber directions in
each voxel and compute their individual eigenvalues.

Previous work using fluid mechanics based tractography has
demonstrated superior performance vs. other competing streamline
and PDE-based methods in resolving crossing fiber geometries in
single tensor data [6]. In this paper, we extend the fluid mechanics
model to incorporate this TDF framework. We model local viscosity
of the fluid and pressure forces using values derived from the TDF
dataset. The incorporation of these pressure and convection terms in
our flow field calculation allows us to closely couple the magnitude
and direction of the fluid velocity to the underlying dominant fiber
directions. To compute an estimate of the most likely connection
path between two regions in the dataset, we simulate the flow of an
artificial fluid between those two points through a volume whose
dimensions, pressure, and local viscosity are derived from the un-
derlying TDF data. The estimated connection path is computed by
finding the optimal path through the fluid velocity vector field that
maximizes a metric that is proportional to the fluid velocity and its
gradient.

2. METHODS

2.1. Tensor Distribution Function Framework

In conventional single tensor reconstruction techniques, the image
intensity at each voxel is related to the diffusion tensor through a
Fourier transform of the displacement probability function. The ten-
sor distribution function approach proposed by Leow et al. [10] ex-
tends the single tensor formulation by representing the diffusion sig-
nal at each voxel by a sum of weighted rank-2 tensors, collectively
defined by a probability tensor distribution function, P(D).

The TDF approach is usually implemented by constraining all
fibers to be cylindrical.

This allows each diffusion tensor to be represented by 3 values:
ν, a single eigenvector corresponding to the principal direction of
diffusion; λ1, the diffusion constant in that direction; and λ2, the
diffusion constant in the plane orthgonal to ν. The TDF can then
be expressed as a linear combination of these diffusion ellipsoids.
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The expected value of these dominant fiber directions can be com-
puted from the maxima of the tensor orientation distribution (TOD)
function, TOD(ν) =

∫
λ

P (D(λ, ν)) dλ, where D(λ, ν) is the
diffusion tensor that corresponds to a particular eigenvalue, λ and
direction, ν.

2.2. Fluid Model Construction

The Navier-Stokes equations describe the flow of a viscous Newto-
nian fluid through a pressure tensor field. In a generalized coordinate
system, in the absence of external forces, and with conservation of
mass, the Navier-Stokes equations simplify to

∂ρvi

∂t
+ ∇ · (ρviv) = ∇ · (μ∇vi) − |(∇ · P)i|, (1)

where v = {vi} in R
3, μ is the viscosity, ρ is the fluid density, and

P is the pressure tensor.
These equations provide a way of solving for the velocity field

of a fluid given its pressure and viscosity. In previous work, we
modeled the pressure and viscosity using scalar measures derived
from a single diffusion tensor and used the fluid velocity as a metric
of connection strength [6]. Here, we extend this model to the TDF
framework by modeling the pressure and viscosity using the optimal
TDF, P ∗(D).

We derive the pressure field for our model by considering the
pressure tensor at each voxel as a weighted sum of the prolate diffu-
sion tensors that correspond to the dominant fiber directions in that
voxel computed from the TOD, P =

∑
i wiDi(λ, ν), where the set

of wiDi(λ, ν) represent the weighted (wi) dominant fiber directions
as computed from the TOD. The local maximum pressure vectors at
any position are coincident with the major computed fiber direction
of the corresponding voxel. This choice has the effect of coupling
the flow dynamics with the local diffusion profile.

In previous work, the local viscosity for our artificial fluid was
proportional to the local fractional anisotropy. This viscous force
therefore had the property of restricting fluid flow in areas of low
anisotropy or coherence, such as gray matter and CSF. We chose
an analogous formulation for the viscous force by using the expo-
nential isotropy, a measure of overall anisotropy derived from the
TDF function proposed by Leow et al., the exponential isotropy
(EI) [10]. EI is derived from the Shannon entropy H(P (D)) =
− ∫

D∈D
P (D) log(P (D)) dD, which measures the randomness of

a probabilistic ensemble, and is formulated as EI = eH(P (D)).
Since the EI is a measure of isotropy and is high in gray matter
and CSF, we model the viscous force as μ = k(1 − EI), where
EI = EIi/EImax is the EI for voxel, i, normalized by the maxi-
mum EI computed in the dataset. The parameter k can be adjusted
to control the overall strength of the viscous force.

2.3. Numerical Solution Using the Finite Volume Method

Because an analytical solution to the Navier-Stokes equations is im-
possible with all but the most trivial models, we used a finite vol-
ume approach similar to our previous work to obtain an approximate
numerical solution of the steady state, ∂ρvi

∂t
= 0. Dirichlet bound-

ary conditions were imposed at the boundary of the brain volume,
which was defined using a hand-drawn mask volume. The flux of
fluid across the boundary was set to zero to prevent the loss of the
artificial fluid from the brain volume, v(p) = 0 ∀p ∈ ∂Ω, where
v(p) = {vi} ∈ R

3 at point p, an arbitrary point on the boundary of
the brain volume, ∂Ω.

Each voxel was considered as a discrete control volume, V, and
the Navier-Stokes momentum equations were integrated across it.
The derivatives in the Navier-Stokes equations were evaluated at the
faces of each control volume using a hybrid differencing scheme.
Our hybrid differencing scheme assumed an upwind differencing
scheme between the control volume, α, and its neighbor, β, for
cells which had a Peclet (Reynolds) number (the ratio of the rela-
tive strengths of convection to diffusion) greater than 2. Otherwise,
the derivatives at the control volume faces were evaluated using a
central differencing scheme.

Numerical integration yielded a system of linear equations equal
to the dimensions of the image volume. Because of the unique form
of this large 3-D linear system, we used a variant tridiagonal matrix
algorithm (TDMA) to solve for the fluid velocity vector field at the
current time step [11]. We implemented the additive operator split-
ting (AOS) method described by Weickert et al., which avoided any
directional dependence in the obtained solution by eliminating the
problem of multiplicative splitting [12]. This method was iteratively
applied until a user-defined convergence criterion was reached. For
all the experiments in this paper, we used a convergence criterion of
(V i − V i−1) < .05V i−1, where V i was the solution to the fluid
velocity vector field at time, t = i.

2.4. Computing Probable Connections

Once we had a solution for the fluid velocity vector field, we esti-
mated the most likely connection path between two seed regions by
finding the optimal path which maximized a weighted function of
the magnitude of the fluid velocity and its gradient. Our approach
was based on the generalized gradient vector flow (GGVF) method
proposed by Xu et al. [13, 14]. The optimal path, expressed as
a parameterized curve r(s) = [x(s), y(s), z(s)] with s ∈ [0, 1],
minimized the following energy functional, E = 1

2

∫ 1

0
[α|r′(s)|2 +

β|r′′(s)|2] + (Φ(r(s), t))] ds.
Parameters α and β are weighting factors, determining the influ-

ence of the curve’s tension or rigidity, respectively. The choice of α
and β can be made based on a priori information about the geometry
of the tract of interest. In the experiments shown in this paper, we
assumed no a priori knowledge, and therefore we always set α and β
equal to unity (1). Φ(r(s), t) is the GGVF field, Φ(r, t), restricted to
the curve, r, parameterized by s, and was calculated using the same
technique described by [6]

2.5. Implementation of a Streamline Tractography Method

In order to compare our method to streamline tractography ap-
proaches, we implemented a tractography method based on the
Fiber Assessment by Continuous Tracking (FACT) method [15]. To
generate a probable connection path between any two ROIs in the
volume, a seed point was chosen within one of those ROIs, desig-
nated as the start ROI. For the single tensor datasets, we iteratively
evolved the tract by starting from the seed point and moving along
the major diffusion direction at the current position by a user-defined
step-size until the second ROI was reached. The tract was immedi-
ately terminated and the tract rejected if the FA ever dropped below
0.4 at any point in the tract or if the diffusion direction from voxel to
voxel changed by more than 60 degrees. These termination criteria
were based on values proposed by Mori et al. [15].

For the TDF datasets, we evolved the tract from the seed region
using a simulated random walk. At each step, t, the direction chosen
by the evolving tract for the next step t+1, μt+1, was randomly cho-
sen from the weighted dominant fiber directions, {wiν

1
i }. A random
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number, r, was generated from the uniform distribution [0,1]. The
direction for the next step was chosen to be μt+1 = ν1

i , if the follow-
ing condition was satisfied,

∑i
n=0 wn < r <

∑i+1
n=0 wn. Tracking

was iteratively continued in this manner until the second ROI was
reached. The tract was immediately terminated and the tract rejected
if (1 − EI) ever dropped below 0.4 at any point in the tract or if
the diffusion direction from voxel to voxel changed by more than 60
degrees.

3. RESULTS

We applied our method to computer generated phantom data to as-
sess its effectiveness in segmenting crossing fiber structures. We also
applied our method to a human control DWI dataset to test its ability
to segment major white tracts. The computational cost of this algo-
rithm can vary widely, depending on the size of the data set and the
algorithm parameters supplied by the user. We performed a timed
simulation, generating 1000 probable connection paths on a control
DTI dataset 192×192×55 with resolution 1.25×1.25×2.5 mm3, 64
gradient directions with uniform spherical sampling, and b values 0
and 1000 s / mm−3, on a Dell Intel 3.8 GHz dual Xeon processor
workstation with 4 GB RAM. To compute the velocity vector field
for the entire brain, the computational time was (330.25 minutes) 5.5
hours. To compute the probable connection paths, the computational
time was (204.31 minutes) 3.4 hours.

3.1. Construction of Digital Crossing Fiber Phantom

To assess the performance of our method in resolving crossing fiber
geometries, we created a digital TDF phantom using a pattern with
two intersecting tracts. We modeled the ground truth as two tracts
intersecting at an angle φ (Figure 1A). The diffusion profile of each
voxel in the TDF dataset where the two tracts intersect was repre-
sented by two prolate ellipsoids with dominant diffusion directions
ν1

A and ν1
B separated by the intersection angle φ (Figure 1B). Dif-

fusion at these voxels was assumed to have diffusion tensor eigen-
values, λ1,2,3, consistent with published values for cerebral white
matter, λ1,2,3 = {1700, 200, 200} [16], for both fiber directions.
An analogous single tensor dataset was constructed for each TDF
dataset according to the same underlying ground truth. The diffu-
sion profile of each voxel in the single tensor dataset where the two
tracts intersect was represented by a single oblate ellipsoid. The two
fiber directions, given by ν1 and ν2, were represented by the eigen-
values and eigenvectors of the ellipsoid.

3.2. Comparative Validation of FluidMechanicsMethod in Seg-
menting Crossing Fiber Phantom

To assess the performance of our method versus a streamline based
method in segmenting crossing fiber tract geometries, we generated
a series of TDF and single tensor digital phantom datasets for values
of φ ranging from 1.25 degrees to 90 degrees. For each TDF dataset,
we applied both the fluid mechanics and streamline methods to a set
of 1000 randomly generated seed points. We applied the fluid me-
chanics method to the corresponding single tensor dataset using the
same set of seed points. Figure 2 shows the fraction of seed points for
each method that successfully segmented the crossing tract phantom
for a given value of φ. Our method was able to segment crossing
fibers at a finer spatial resolution than the streamline approach for
angles less than 60 degrees. In addition, the fluid mechanics method
was more robust in segmenting crossing fiber geometries on the TDF
dataset than the single tensor dataset.

3.3. Segmentation of Corpus Callosum in Human Control Data

To ascertain the ability of our method to segment major white mat-
ter tracts in the human brain, we applied our method to a human
control TDF dataset to segment the corpus callosum. An individ-
ual subject was scanned on a Bruker Medspec 4 Tesla MRI scanner
with a transverse electromagnetic (TEM) headcoil using a diffusion-
sensitized MRI protocol. The protocol used 94 diffusion-sensitized
gradient directions, and 11 baseline scans (b = 0) with no diffusion
sensitization. Multiple seed points were randomly chosen from a
mid-sagittal view of the corpus callosum on a directionally encoded
color (DEC) volume. Figure 3 shows the segmentation results to-
gether with a surface model of the brain volume. Our method was
able to completely reconstruct both the anterior and posterior cal-
losal limbs. These are normally difficult regions for conventional
single tensor tractography techniques because of intersecting fibers
from the internal capsule. The TDF framework was able to success-
fully represent the crossing fibers in these voxels, and our method
successfully segmented the entire corpus callosum structure.

Fig. 1. Digital crossing fiber phantom constructed for comparative
validation. A. Ground truth paradigm. Each dataset was generated
from a ground truth of two intersecting tracts (wireframe and gray)
whose tract spines (intersecting red lines) are separated by an angle,
φ. B. For each TDF datasets, voxels in the dataset where the two
tracts in A intersect are represented by two prolate ellipsoids with
eigenvalues, λA

1 and λB
1 . C. For the single tensor datasets, voxels in

the dataset where the two tracts in A intersect are represented by a
single oblate ellipsoid with equal eigenvalues λ1 = λ2.

4. DISCUSSION

In this paper, we have introduced a fluid mechanics tractography
method that estimates connectivity between regions in TDF datasets.
Previous work has shown that fluid mechanics based approaches to
single tensor DTI tractography are advantageous because they are
robust to noise and can approximate complex fiber crossing geome-
tries. Since the TDF framework can successfully represent intra-
voxel crossing fibers, extension of our single tensor fluid mechan-
ics tractography algorithm to these TDF datasets provided a robust
method for accurately segmenting complex fiber geometries. We
validated our technique against a competing streamline-based trac-
tography method using a digital TDF phantom dataset based on a
pattern with two intersecting tracts. Our method was able to seg-
ment the two underlying tracts with a finer spatial resolution than our
streamline-based TDF method or our single tensor fluid mechanics
tractography method. The phantoms are limited to a maximum of
two dominant fiber directions per voxel, so it is currently unknown
whether our method will continue to be superior for voxels with three
of more dominant fiber directions.

Using normal human brain DWI data, we demonstrated that our
algorithm can segment a major fiber pathway, the corpus callosum.
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Fig. 2. Performance of fluid mechanics method vs. streamline
method to segment digital crossing fiber phantom. Digital phantom
datasets were constructed for a series of separation angles accord-
ing to the ground truth seen in figure 1. For each dataset, a set of
seed points (S = 1000) for both the fluid mechanics and streamline
techniques were randomly chosen from within the dataset. Corre-
sponding single tensor datasets were also generated for each φ. The
graph shows the fraction of seed points that successfully segmented
the two crossing tracts for various values of φ for (1) fluid mechanics
method on the phantom TDF dataset, (2) streamline method on the
phantom TDF dataset, and (3) fluid mechanics method on the single
tensor dataset.

In particular, our method was able to fully reconstruct the callosal
limbs - regions that are difficult for conventional tractography meth-
ods to segment because of crossing fibers of the internal capsule.
Current and future work is focused on comparative validation in the
human dataset using varied major fiber pathways and application to
human datasets with white matter pathology.
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