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ABSTRACT

Brain connectivity patterns are useful in understanding brain function and organization. Anatomical brain
connectivity is largely determined using the physical synaptic connections between neurons. In contrast statistical
brain connectivity in a given brain population refers to the interaction and interdependencies of statistics of
multitudes of brain features including cortical area, volume, thickness etc. Traditionally, this dependence has
been studied by statistical correlations of cortical features. In this paper, we propose the use of Bayesian network
modeling for inferring statistical brain connectivity patterns that relate to causal (directed) as well as non-causal
(undirected) relationships between cortical surface areas. We argue that for multivariate cortical data, the
Bayesian model provides for a more accurate representation by removing the effect of confounding correlations
that get introduced due to canonical dependence between the data. Results are presented for a population of 466
brains, where a SEM (structural equation modeling) approach is used to generate a Bayesian network model, as
well as a dependency graph for the joint distribution of cortical areas.
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1. INTRODUCTION

Human brains are known to be organized in a large-scale network formed by neurons (basic units that store,
process and transmit information) and their specialized interconnections (synapses). This brain network is
massively complex, hierarchical and can be decomposed and studied at different scales for easier understanding.
Brain connectivity refers to a pattern of anatomical links (anatomical connectivity), of statistical dependencies
(functional connectivity) or causal interactions (effective connectivity) between distinct units of the brain. The
connectivity patterns are either determined by directly observing structural links such as synapses or fiber
pathways, or by representing statistical or causal relationships measured as cross-correlations, coherence, or
information flow. More specifically, brain network analysis has been traditionally performed at several levels,
viz. i) cellular level,1 ii) macroscopic aggregated level2, 3 (using structural connectivity information such as
DTI), and the iii) functional level4–7 (using functional data such as fMRI and EEG). Each of these approaches
study brain connectivity via diverse anatomical and functional characteristics of the brain, and are extremely
helpful in determining both local and global, as well as low-level, and high-level architectural and functional
organization of the brain. However, the structural networks of the human cerebral cortex have not yet been
comprehensively mapped,8 and much work remains to be done. Apart from the physical neuronal connections,
the cerebral cortex is shown to consist of clusters of densely and reciprocally coupled globally interconnected
cortical regions. Of late, researchers have started exploiting this knowledge in order to determine statistical brain
connectivity patterns in populations. These approaches also termed as “effective networks”,9 are beginning to be
useful for determining structural networks based on morphological properties such as cortical thickness, areas,
and volumes are receiving renewed attention for the purpose of understanding the organizational principles in the
human brain. Analyses of structural brain connectivity patterns, for example of large-scale connectivity matrices
of the cerebral cortex, allow the quantification of a broad range of network characteristics.10 Sporns et al.8 have
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referred to the connectivity matrix as the human connectome and have proposed a comprehensive approach for
its construction. A similar idea has been used by11 for understanding the functional brain states associated with
their structural counterparts. Friston et al.12 also use dynamic causal modeling in order to estimate and make
inferences about directed dependencies between variables. Large-scale cortical networks share some attributes
of small-world networks, including high values for clustering coefficients and short characteristic path lengths,
and they are composed of specific sets of structural motifs.13 An analysis of the structural contributions of
individual areas allows the identification and classification of network centers, defined as highly connected and
highly central brain regions, which include areas of parietal and prefrontal cortex. Structural networks based
on morphological properties such as cortical thickness has received attention in order to understand structural
organizational principles in the human brain can enhance our understanding of how functional brain states are
associated with their structural substrates.

Our goal is to model inter-dependencies between different brain structures. These relationships may be either
causal (i.e. changes in a given specific type of a brain sub-structure are a direct consequence of changes in another
type of a sub-structure), or correlated. In either case, the relationships are usually inferred statistically from the
observed data. Furthermore these relationships can be conveniently represented by networks or graphs, where
the nodes of such graphs are random variables corresponding to the observed data values. Examples of graphical
models14 include Markov random fields and Bayesian networks.15 Markov random fields encode undirected
graphs, whereas Bayesian networks assign directionality to each of the links of the graph. Both of these approaches
involve the introduction of a set of unobserved, “hidden” variables that simplify the model. Yet other approaches?

have constructed networks that only depend upon the estimated correlation coefficients between the observed
data. Formally, Bayesian networks are directed acyclic graphs whose nodes represent random variables in the
Bayesian sense: they may be observable quantities, latent variables, unknown parameters or hypotheses. Edges
represent conditional dependencies; nodes which are not connected represent variables which are conditionally
independent of each other. Each node is associated with a probability function that takes as input a particular
set of values for the node’s parent variables and gives the probability of the variable represented by the node. The
Bayesian network then represents a set of random variables and their conditional independences via a directed
acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between
diseases and symptoms. Given a set of symptoms, the network can be used to compute the probabilities of the
presence of various diseases.

Automatically learning the graph structure of a Bayesian network is a challenge pursued within machine
learning. The basic idea goes back to a recovery algorithm developed by Rebane and Pearl16 and rests on the
distinction between the three possible types of adjacent triplets allowed in a directed acyclic graph. In this
paper, we focus on a Bayesian network modeling approach for estimating statistical dependencies of surface
areas of cortical hemispheric sub-regions with respect to each other. These dependencies will be further used
for learning and modeling brain structure networks. In our application the underlying network structure is
assumed to be unknown. In this case the network structure and the parameters of the local distributions must
be learned from imaging data. We achieve this by deriving the joint probability distribution of the cortical
area, and succinctly represent and visualize them by a partially directed graph. This graph representation of
joint distribution can help in understanding causal as well as correlational relationships across regions. We
propose a new approach for obtaining the connectivity in brain regions based on Bayesian networks rather
than simple correlation coefficients. More specifically, we use structural equation approach for modeling the
joint distribution of parcellated cortical areas. The mechanisms of brain networks at at a higher level, can
be conveniently represented and studied under a graph-theoretic framework. Throughout this paper, graphical
models will be considered at the macroscopic level, where the vertices of graphs represent individual anatomical
regions, and the edges denote the connectivity relationships between them. As a fundamental and intuitive tool
to analyze and visualize the association and/or causality relationships among multiple events, graphical models
have become more and more common in biomedical researches, such as discovering gene regulatory networks
and modeling functional connectivity between brain regions. In these real world applications, graphical models
are not only a tool for operations such as classification or prediction, but often the network structures of the
models themselves are also output of great interest: a set of association and/or causality relationships discovered
from experimental observations. We describe our approach for obtaining the network structure in the following
sections.
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2. METHODS

This section highlights the main algorithm in the paper. In this paper, we focus on cortical surface area obtained
from the gray matter (GM) measurements, although in the future surface characteristics such as curvature for
cortical regions, and even additional measurements such as diffusion tensor data can be included. We also
currently omit subcortical regions such as the hippocampus, caudate etc. and only concentrate on the surface
measures. In the following subsections, we describe the steps and procedures, leading from the collection and
processing of brain MRI data, segmentation of cortical structures, as well as modeling the joint distributions of
the parcellated cortical areas leading to the construction of the brain connectivity map using Bayesian networks.

2.1 Data collection and preprocessing

The data consists of 3D structural brain MRI scans of 466 normal right handed subjects (age range: 22 − 25
years). The scans were collected using a 4 Tesla Bruker Medspec whole body scanner (Bruker Medical, Ettingen,
Germany) at the Center for Magnetic Resonance (University of Queensland, Australia). Three-dimensional T 1-
weighted images were acquired with a magnetization prepared rapid gradient echo (MP-RAGE) sequence to
resolve anatomy at high resolution. Acquisition parameters were: inversion time (TI) /repetition time (TR)
/echo time (TE) = 1500 / 2500 / 3.83 msec; flip angle = 15o; slice thickness = 0.9 mm with a 256x256x256
acquisition matrix. In this paper, we used parcellation of grey matter volume as our structural data. In
order to get structural data statistics, we used Freesurfer’s automated processing pipeline for automatic skull
stripping, tissue classification, surface extraction, cortical and subcortical parcellations. It calculates volumes
of individual grey matter parcellations in mm3 and surface area in mm2. Additionally it also provides surface
and volume statistics for about 34 different cortical structures, and also computes geometric characteristics such
as curvature, curvedness, local foldedness for each of the parcellations. In this work, we used cortical areas as
anatomical features to find the structural connectivity. Figure 1 shows the lateral, frontal, and medial views of
the cortex parcellated and color coded into 34 regions.

Figure 1. Lateral, frontal, and medial views of the cortex parcellated into 34 regions.

2.2 Analysis of distributions of segmented measurements

After segmenting the cortical areas, we tried to ascertain the distribution of the surface area across the population.
An initial view of the distribution of the gray matter volumes revealed non-Gaussian properties. Figure 2 shows
histograms of gray matter volumes corresponding to all 34 regions for total number of 466 subjects. It was
observed that a log normal distribution with parameters (μ, σ) given by the form p(x) = 1

xσ
√

2π
exp (log x−μ)2

2σ2

fitted the observed data quite well. To perform quantitative validation of log-normality, we performed a log
transformation on this data and performed Lilliefors test17 on the transformed data to check for normality. The
test was passed, thus validating the lognormal assumption. The subsequent analysis and construction of the
networks was performed by computing the logarithm of the measurements so as to transform the gray-matter
volume data to have a multivariate normal distribution.

2.3 Bayesian Network Extraction from Structural equation Modeling

Structural equation models (SEMs) provide a general framework for modeling implicit relationships in multi-
variate random variables.18–20 Although SEMs are most commonly used in studies involving intrinsically latent
variables, such as happiness, quality of life, or stress, they also provide a parsimonious framework for covariance
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Figure 2. Histograms of surface areas for 34 labeled region, with the fitted Log-normal distributions overlaid in red.

structure modeling.21 For this reason, they have become increasingly used outside of the traditional social sci-
ence applications. Additionally, the SEM graph also provides causal and correlational dependence between these
variables which can help in understanding various network properties of different areas. For example, one can
answer questions such as, which cortical regions are central to development and how they influence development
of other cortical regions in the brain. The SEM graph extracted from this data can provide insight into interde-
pendence between these variable and help in understanding development of brain. In pathological cases, such as
Alzheimer’s disease, one can study causal and correlational structure of disease propagation using this network,
although in this paper, we only considered a population of normal brains.

As discussed in Sec. 2.2, the input to the SEM algorithm was the log-transformed data of surface areas of
different brain regions. Next, we followed a two step procedure to extract the SEM graph structure of the data,
viz. i) Structural Equation Modeling (SEM) Skeleton Extraction, and ii) SEM parametric model estimation.
These steps are implemented in Tetrad IV software by Spirtes et al.,22 available from http://www.phil.cmu.
edu/projects/tetrad/index.html .

2.3.1 SEM Skeleton Estimation

We use the PC skeleton algorithm ?? for determining the skeleton of the desired SEM graph. The PC skeleton
algorithm is designed to search for causal explanations of observational data in which it may be assumed that
the true causal hypothesis is acyclic in nature. We outline the algorithm below, but refer the reader to23, 24 for
detailed description and explanation. The algorithm operates by asking a conditional independence oracle to
make judgments about the independence of pairs of variables (e.g., X , Z) conditioned on sets of variables (e.g.,
{Y }). Conditional independence test between a pair of variables from a multivariate Gaussian is performed by
computing partial correlation between the two variables, controlling the conditioned variables. The adjacency
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graph structure is extracted in the algorithm by constructing a complete undirected graph over the variables
and then removing the edges X − Y if some set S among either the adjacent of X or Y can be found such that
X and Y are conditionally independent given S. After the graph is constructed, the SEM parametric model is
estimated from the skeleton by PC algorithm.

2.3.2 SEM parametric model

Each variable representing cortical area of a parcellation is represented as a linear sum of its parents plus an
exogenous error term–e.g., X1 = a1(X2) + a2(X3) + e1, X2 = a3(X3) + e2, and so on, where the distribution
of each error terms has a specified variance and correlations among error terms are specified. The graph for
such a system consists of one node for each variable, one node for each error term, a directed edge from each
variable on the right hand side each such equation above to the variable on the left hand side of the equation.
In other words, a directed edge represents a causal relationship between the pair of variables. The bidirected
edges between each pair of variables denote variables with correlated error terms. The parameters in this model
consist of:

1. Linear coefficients in the structural equations (e.g., a1, a2, and a3, above),

2. Variances of each error term(e.g., var(e1), var(e2), above),

3. Covariances of each pair of correlated error terms.

The above parameters are estimated using the maximum likelihood parameter estimation23, 25 from the surface
areas of different regions. The estimated parameters are represented pictorially as well as in a tabulated format
in Sec. 3.

3. EXPERIMENTAL RESULTS

Figure 3 shows the Bayesian network obtained from the application of PC algorithm to the surface area data
corresponding to 34 cortical regions for the population of 466 brains. For a better visualization of brain connec-
tivity, we have shown network edges overlaid on a flattened representation of the cortex. The flattened map was
generated by Freesurfer, and follows same labeling and color coding scheme of the original parcellated surface
shown in Fig. 1. We only display the causal connections (unidirected) between brain regions. We can observe
both short-range and long-range causal connectivity relationships across regions. The SEM model yields a set
of equations representing joint distribution of the variables. For example, Xi = a1X1 + a2X2 + ... + ei. The
coefficients, a1, a2 etc are denoted as directed arrows X1 → Xi, X2 → Xi, etc with those weights. These are
shown in Fig. 3. The mean and standard deviations of the error terms eis are tabulated in Table 1, whereas
the covariances between the error terms are pictorially depicted in Fig. 4. We note that there is some degree
of left-right symmetry in connections with large weights but we also observed asymmetry in some connections.
This will be explored further.

4. CONCLUSION AND DISCUSSION

The parametric description for the joint distribution of the cortical sheet presented in this paper can be helpful
in understanding causal and correlated dependencies between descriptive features of brain regions. Although we
use surface area as the cortical feature in this work, one can also use other features such as volumes, thickness,
or any other descriptive features that can be anatomically measured on the cortical sheet. In the future, this
representation can be helpful in a richer understanding of the functional associations and interdependencies of
different regions. This compact representation of the joint distribution of the cortical sheet can be helpful in
understanding normal as well as abnormal brain development. Using these graph models, one can analyze the
redistribution/reconfiguration of cortical sheet for specialized cases, such as blind, hearing impaired populations.
We plan to conduct these studies in the future.
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Table 1. Error statistics for the SEM model for each of the 34 regions for both left and right hemispheres. The 34 regions
are labeled according to Freesurfer. For each hemisphere, the mean and the standard deviation of the estimated error is
shown.

No. Cortical Region Left Right
Mean Std Deviation Mean Std Deviation

1 bankssts 6.9708 0.1507 6.6905 0.218
2 caudalanteriorcingulate 6.5109 0.1478 6.5073 0.1795
3 caudalmiddlefrontal 7.6572 0.216 7.7013 0.1981
4 cuneus 7.2909 0.2354 7.246 0.1507
5 entorhinal 5.7917 0.2362 5.8209 0.2389
6 fusiform 7.9383 0.1409 7.9252 0.1595
7 inferiorparietal 8.4476 0.1505 8.4808 0.1424
8 inferiortemporal 7.798 0.1487 7.7693 0.1876
9 isthmuscingulate 6.7267 0.1528 6.7059 0.1407
10 lateraloccipital 8.4973 0.1545 8.4157 0.1459
11 lateralorbitofrontal 7.6453 0.1138 7.7029 0.1327
12 lingual 8.0515 0.1497 7.9821 0.1189
13 medialorbitofrontal 7.3118 0.175 7.3233 0.1654
14 middletemporal 7.8546 0.1701 7.8994 0.1433
15 parahippocampal 6.6033 0.1539 6.5806 0.1372
16 paracentral 7.2007 0.1345 7.3842 0.1296
17 parsopercularis 7.376 0.1543 7.2557 0.1631
18 parsorbitalis 6.2633 0.197 6.5927 0.1394
19 parstriangularis 7.029 0.1614 7.288 0.1525
20 pericalcarine 7.2368 0.1595 7.2329 0.1746
21 postcentral 8.2715 0.084 8.3208 0.1053
22 posteriorcingulate 7.156 0.1322 7.0956 0.1273
23 precentral 8.4716 0.0901 8.494 0.0922
24 precuneus 8.2557 0.1396 8.2541 0.1041
25 rostralanteriorcingulate 6.4248 0.1592 6.3141 0.2057
26 rostralmiddlefrontal 8.5105 0.1229 8.5698 0.1248
27 superiorfrontal 8.8332 0.0893 8.8028 0.0755
28 superiorparietal 8.5963 0.1397 8.5427 0.1023
29 superiortemporal 8.1105 0.1273 8.1369 0.1196
30 supramarginal 8.1835 0.1428 8.2734 0.1555
31 frontalpole 5.1479 0.217 5.4888 0.2075
32 temporalpole 5.7475 0.2178 5.734 0.2066
33 transversetemporal 6.0129 0.1404 5.9332 0.2194
34 insula 7.5706 0.0732 7.5963 0.1138
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Left Hemisphere Right Hemisphere

Figure 3. Causal connections between 34 labeled regions along with their weights displayed on a flattened representation
of the cortex for both left and right hemispheres.
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Figure 4. Error covariances of the SEM model for both left and right hemispheres.
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